Agri-Photovoltaik kann die Folgen von Dürreperioden auf die Produktion pflanzlicher Nahrungsmittel abschwächen: Die Beschattung, die bei ausreichend Wasser oft die Ernteerträge senkt, kann bei Dürre sogar zu Ertragssteigerungen führen. Das ist das Ergebnis einer Untersuchung der Universität Hohenheim in Stuttgart.
Der Ersatz fossiler Brennstoffe durch erneuerbare Energien gilt als Schlüssel, um den Klimawandel abzubremsen. Dabei ist die Solarenergie, also die Umwandlung von Sonnenenergie in elektrische Energie durch Photovoltaik, die ergiebigste erneuerbare Energie und wird gleichzeitig immer erschwinglicher.
Die Installation von Photovoltaik-Anlagen auf Freiflächen steht jedoch in direkter Konkurrenz zu anderen Formen der Landnutzung, wie unter anderem der landwirtschaftlichen Produktion. Eine Lösung bietet die Agri-Photovoltaik. Sie ermöglicht die Erzeugung von Nahrungsmitteln und Energie auf derselben Fläche. Dazu werden beispielsweise die Photovoltaik-Paneele auf Ständer gesetzt, so dass darunter Nutzpflanzen angebaut werden können. Alternativ werden die Module in Bodennähe so installiert, dass zwischen ihnen Landwirtschaft betrieben werden kann.
Im Klimawandel kann Agri-Photovoltaik Ernteerträge steigern
Doch diese Form der Energieerzeugung kann noch mehr. Forschende vom Fachgebiet Pflanzenökologie der Universität Hohenheim haben sich mit dem Potenzial beschäftigt, unter den sich ändernden klimatischen Bedingungen die Ernteerträge durch Agri-Photovoltaik zu steigern. Zwar verringert die Beschattung durch die Photovoltaik-Anlage die Erträge, wenn ausreichend Wasser für das Pflanzenwachstum zur Verfügung steht. Bei Wasserknappheit profitieren die Pflanzen jedoch von der geringeren Verdunstung und damit einem geringeren Wasserverlust: Der Ertrag ist höher als auf den unbeschatteten Flächen
Wichtig für trockenheitsanfällige Regionen
Besonderes Potenzial sehen sie in Regionen, in denen es gleichzeitig ein starkes Bevölkerungswachstum und ausgeprägte Dürreperioden gibt, wie beispielsweise in Indien oder Afrika. Vor allem die Verfügbarkeit von Wasser nimmt in vielen Regionen der Welt drastisch ab – mit weitreichenden Folgen für die Ernährungssicherheit.
Zudem stellt in den Randgebieten aller grossen Wüsten die Photovoltaik eine Strategie zur Bekämpfung der Wüstenbildung dar. In Regionen mit Grundwasserknappheit könnte so die Erschöpfung dieser wichtigen Ressource verringert und gleichzeitig die CO2-Emissionen aus der Stromerzeugung reduziert werden, was wiederum dem Klimawandel entgegenwirkt. Damit trägt die Agri-Photovoltaik nicht nur dazu bei, die Auswirkungen des Klimawandels in bereits als trocken eingestuften Regionen abzuschwächen. Sie wird vor allem für Regionen von Bedeutung sein, die in Zukunft mit einer zunehmenden Wasserknappheit konfrontiert sein werden, wie zum Beispiel in grossen Teilen der Mittelmeerregion.
Potenzial stark abhängig von Region, Pflanzen und verwendetem System
Allerdings fällt dieses Potenzial je nach den klimatischen Bedingungen sehr unterschiedlich aus und hängt stark von den Pflanzen ab, die in solchen dualen Landnutzungssystemen angebaut werden. So tolerieren die meisten der bislang untersuchten Kulturen eine Beschattung von bis zu 15% ohne nennenswerte Ertragseinbussen.
Beeren, Obst und Fruchtgemüse profitieren sogar von einer Beschattung, während die Erträge von Futterpflanzen, Blattgemüse, Knollen- und Hackfrüchte sowie der meisten Getreide-Arten darunter minimal leiden. Starke Ertragseinbussen hingegen gibt es beispielsweise bei Mais, Ackerbohnen, Soja und Lupinen selbst bei geringer Beschattung.
Noch grosser Forschungsbedarf
Noch fehlt es allerdings an detailliertem Wissen über die Beziehungen zwischen den unterschiedlichen Formen der Agri-Photovoltaik und den Reaktionen der verschiedenen Pflanzen. Denn diese Reaktionen beschränken sich nicht nur auf die Wasserversorgung. So beginnen viele Pflanzen im Schatten, das Wachstum des oberirdischen, photosynthetisch aktiven Blattmaterials zu erhöhen. Interessant ist dies zum Beispiel bei Salat, da dieser Teil der Pflanzen von wirtschaftlichem Interesse ist.
Weitere Forschungsergebnisse werden nicht nur gebraucht, um unter den gegebenen klimatischen Bedingungen die optimalen Pflanzen für die jeweilige Beschattung auszuwählen. Sie können auch zur Entwicklung intelligenter Agri-Photovoltaik-Systeme beitragen, bei denen in Echtzeit die Stresssignale der Pflanzen genutzt werden, um die Ausrichtung der Paneele und damit die Beschattung zu steuern.